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Study Area
The study area used for modeling was incorporated from earlier modeling efforts (Nussearand Simandle 2019), and consisted of a 50km buffer area around the boundary for Clark CountyNV. The projection used was a NAD83, UTM Zone 11N projection (corresponding to the EPSG26911). Raster resolution for all input and output layers was set at a 250 m grid resolution. Allenvironmental data, and point data were cropped, masked and re-sampled to this resolution andextent. Envrionmental Layers used include those from Nussear and Simandle 2019, SWECO 2018.These are given in Table 1 below.

Table 1. Environmental covariate names and their source.Name Source
Ave Max Temp Average of the maximum monthly temperatures for a 30-year normal periodbetween 1988 and 2018 calculated from monthly PRISM data at 800m resolutionand downscaled to a 250 m resolution with bicubic spline interpolation using gdal-warp in python.Ave Min Temp Average of the maximum monthly temperatures for a 30-year normal periodbetween 1988 and 2018 calculated from monthly PRISM data at 800m resolutionand downscaled to a 250 m resolution with bicubic spline interpolation using gdal-warp in python.Clay Downloaded from the Soil Grids 250m project. Hengl et al. 2017
Coarse fragments Downloaded from the Soil Grids 250m project. Hengl et al. 2017
CV Max Temp Coefficient of Variation of the maximum monthly temperatures for a 30-yearnormal period between 1988 and 2018 calculated from monthly PRISM data at800m resolution and downscaled to a 250 m resolution with bicubic splineinterpolation using gdal-warp in python.CV Min Temp Coefficient of Variation of the maximum monthly temperatures for a 30-yearnormal period between 1988 and 2018 calculated from monthly PRISM data at800m resolution and downscaled to a 250 m resolution with bicubic splineinterpolation using gdal-warp in python.Dist to cliffs Distance of Cliffs - from Inman et al. 2014
Extreme MaxTemp Extreme Maximum of monthly temperatures for a 30-year normal period between1988 and 2018 calculated from monthly PRISM data at 800m resolution anddownscaled to a 250 m resolution with bicubic spline interpolation using gdal-warpin python.Extreme Min Temp Extreme Minimum of monthly temperatures for a 30-year normal period between1988 and 2018 calculated from monthly PRISM data at 800m resolution anddownscaled to a 250 m resolution with bicubic spline interpolation using gdal-warpin python.Flow Accum Inman et al. 2014
NDVI Amplitude USGS Phenology network - https://www.usgs.gov/land-resources/eros/phenology/science/deriving-phenological-metrics-ndvi?qt-science_center_objects=0#qt-science_center_objects
NDVI Length ofSeason USGS Phenology network - https://www.usgs.gov/land-resources/eros/phenology/science/deriving-phenological-metrics-ndvi?qt-science_center_objects=0#qt-science_center_objectsNDVI Max USGS Phenology network - https://www.usgs.gov/land-resources/eros/phenology/science/deriving-phenological-metrics-ndvi?qt-science_center_objects=0#qt-science_center_objectsSand Downloaded from the Soil Grids 250m project. Hengl et al. 2017



Name Source
Silt Downloaded from the Soil Grids 250m project. Hengl et al. 2017
Slope Calculated from USGS National Map. https://www.usgs.gov/core-science-systems/national-geospatial-program/national-mapStart of Season(day) USGS Phenology network - https://www.usgs.gov/land-resources/eros/phenology/science/deriving-phenological-metrics-ndvi?qt-science_center_objects=0#qt-science_center_objectsWinter Precip Average of the cumulative annual winter precipitation (October - March) for a 30-year normal period between 1988 and 2018 calculated from monthly PRISM data at800m resolution and downscaled to a 250 m resolution with bicubic splineinterpolation using gdal-warp in python.CV Winter Precip Coefficient of Variation for the cumulative annual winter precipitation (October -March) for a 30-year normal period between 1988 and 2018 calculated frommonthly PRISM data at 800m resolution and downscaled to a 250 m resolution withbicubic spline interpolation using gdal-warp in python.Surface roughness Inman et al. 2014
Average SpringMax Temp Average of the maximum monthly temperatures for March - May for a 30-yearnormal period between 1988 and 2018 calculated from monthly PRISM data at800m resolution and downscaled to a 250 m resolution with bicubic splineinterpolation using gdal-warp in python.CV Average SpringMax Temp Coefficient of Variation for the maximum monthly temperatures for a 30-yearnormal period between 1988 and 2018 calculated from monthly PRISM data at800m resolution and downscaled to a 250 m resolution with bicubic splineinterpolation using gdal-warp in python.Percent washes Calculated from USGS National Map. https://www.usgs.gov/core-science-systems/national-geospatial-program/national-mapAbsolute depth tobedrock Downloaded from the Soil Grids 250m project. Hengl et al. 2017

Species locality data
Species locality data were obtained from our earlier modeling efforts (Nussear and Simandle2019, SWECO 2018), and were updated from current searches at INaturalist using research gradeobservations without obscured locality data, as well as with data updates from Clark County NVwhich were supplied to us by John Ellis in the form of 1 excel file (Clark County SpeciesObservations.xlsx), and 1 geodatabase (CC_Data_Deliverable.gdb) that we received on August23.

Modeling Methods
Modeling updates were conducted using an ensemble modeling approach that incorporatedfour different algorithms commonly used in species distribution modeling. These were:generalized additive models (GAM; using the “mgcv” method Wood 2006), random forests (RF;implemented in the R package “randomForest,” Liaw and Wiener 2002), MaxEnt (version 3..4.1,Phillips et al. 2006) implemented in the Maxnet algorithm in R (maxnet v 0.1.4, Phillips 2021) andGeneralized boosted regression models (GBM) implemented in the PgbmR package (version2.1.8.1, Greenwell et al 2022). All models were executed using custom species distributionmodeling code developed by Nussear for an upcoming package for R, (Nussear et al in Prep2023). The use of multi-algorithm ensembles renders predictions less susceptible to the biases,assumptions, or limitations of any individual algorithm, while broadening the types of



environmental response functions that can be identified (Araujo and New 2006). Moreover,empirical evaluations have found GAM, RF, MaxEnt, and GBM to be consistently strongperformers among habitat distribution modeling algorithms (Franklin 2010). All modeling wasconducted in R version 4.3 (R Core Team 2023).
True absence points were not available for any of the study species at this time. For thisreason, all models were fit using randomly generated background points (pseudo-absences).Random selections of background points are considered a reliable method for regressiontechniques, and are a widely used method (Wisz and Guisan 2009; Barbet-Massin et al. 2012).Background points were randomly drawn from a bioclimatic envelope model executed in thebioclim algorithm from the dismo package (v 1.3, Hijmans et al. 2023) selecting points with thesame frequency of occurrences (Barbet-Massin et al. 2012) from areas with a model value below0.3.
To keep models interpretable and to improve their generalization across the study area, wealso did not include interaction terms. Because presence points tended to be spatiallyaggregated, which can lead to substantial bias in model predictions, we first rasterized thepresence points to the modeling resolution (i.e., such that only one presence point could occurwithin each grid cell) and subsequently applied a geographically-weighted resampling procedurein which a maximum of three observations could be sampled from cells on a uniform grid at aspatial resolution 4 times larger than the modeling extent (e.g., 1 km2 for a 250 m2 ). Thissystematic grid sampling approach for spatial thinning of presence points can be effective atreducing spatial bias under a variety of conditions (Fourcade et al. 2014). To further reduce biasin our predictions, we used cross-validations to fit and evaluate all habitat models. In thisprocess, each algorithm was fit across 20 samples of randomly selected, spatially thinnedpresence points, with a 20% random sample (without replacement) withheld for modelevaluation at each iteration (i.e., 80 % of presence points were used in model fitting, and 20% inmodel evaluation). Background points were also randomly drawn for each cross-validation.
This modeling effort included a vegetation layer that was provided in a shapefile format(Vegetation_USNVC_Divisions_20240423_LAME_CC.shp),consisting of plant association/alliancegroup polygons, and was to be evaluated for inclusion in the modeling efforts. This createdchanges in our modeling approach, and the implementation of additional modeling techniques.First the vegetation layer was a smaller extent than the buffered study area for the initialmodels, restricted to the Clark County boundary, with sections missing in the northwesternextent on the Nevada National Test Site, and a few smaller patches, where the Lake Mead areawas included in the final V3 model versions. In addition the data are categorical with 16 levels ofvegetation associations (Table 3). Given the relatively narrow distribution of some species withrespect to vegetation communities this can create difficulties modeling, as all of the categoriesneed to be represented in the presence and absence data. To achieve this requirement weaugmented absence data with random samples stratified within each of the strata, adding up to5 points per strata – and treated them as pseudo absences. For these modeling efforts the GAMalgorithm was not used as there were problems with model convergence, and the MaxEntmodels all converged on either all present, or all absent outputs, and were not used forensemble modeling. Thus the final models including the vegetation layer relied on the RF andGBM algorithms .
Metrics of model prediction accuracy were calculated based on the evaluation data for eachof the cross-validation runs, and subsequently averaged across runs. Performance metricsincluded several threshold-independent measures: AUC (the area under the receiver operatingcharacteristic; Fielding and Bell 1997), the Boyce Index (BI; Boyce et al. 2002; Hirzel et al. 2006),and the True Skill Statistic (TSS; Allouche et al. 2006). TSS takes into account both omission andcommission errors and is insensitive to data prevalence (Allouche et al. 2006).



Habitat distribution models vary in their ability to effectively discriminate different classesof habitat along the full range of habitat suitability values (0 – 1; Hirzel et al. 2006). To evaluatethis property, we calculated the continuous Predicted / Expected (P/E) ratio curves based on theBI (Hirzel et al. 2006) using the ecospat package (v 3.0) in R. These curves reflect how well eachmodel deviates from random expectation, and inform the interpretation of biologicallymeaningful suitability categories by indicating the effective resolution of suitability scores foreach model (i.e., the modelRs ability to distinguish different classes of suitability; Hirzel et al.2006).
To generate predictive layers of habitat suitability for each species (Table 2), we selectedthe top candidate models from each algorithm, based upon model performance metrics acrosscross-validation runs where the AUC was greater than the mean of all models. Ensemblepredictions for individual algorithms were generated by taking the weighted average amongcandidate models for all algorithm types (i.e., one ensemble prediction each for GAM, RF, GBM,and MaxEnt models), with the weights determined by TSS scores for each of the includedmodels. Layers representing the standard error of the overall ensemble habitat suitability layerwere calculated as the standard deviation in model predictions across all candidate models,divided by the square root of the number of candidate models considered).

Quantitative model interpretation
To facilitate biological interpretations of the ensemble models, we410 calculated therelative importance of environmental predictors across candidate models for each algorithm. Toillustrate the shape of the relationships between predicted habitat suitability and importantenvironmental covariates, we derived partial response curves for the top 4 environmentalparameters for each of the algorithms. Partial response curves show the predicted habitatsuitability across a single covariateRs range of values, while holding all other covariates at theirmean value (e.g., Elith et al. 2005). To indicate the overall distribution of covariate values acrossthe study region, we overlaid the response curve plots with histograms representing eachenvironmental covariate. These histograms were calculated from the combined presence andpseudo absence locations.

Habitat Models
Models with and without the new vegetation layer were completed for 17 species – which aregiven in the table below (Table 2).
Table 2. Species “codes”, common names, and scientific names for species covered in thismodeling effort.
SPECIES
CODE COMMON NAME SCIENTIFIC NAME
ANLE Sticky Ringstem Anulocaulis leiosolenus
AQCH Golden eagle Aquila chrysaetos
ARCA Las Vegas Bearpoppy Arctomecon californica

ASGETR Three Corner Milkvetch Astragalus geyeri var. triquetrus
ATCU Burrowing Owl Athene cunicularia



SPECIES
CODE COMMON NAME SCIENTIFIC NAME
CHPE Desert Pocket Mouse Chaetodipus penicillatus
COCH Gilded Flicker Colaptes chrysoides
ENAR Silverleaf Sunray Enceliopsis argophylla
ERBI Pahrump Valley Buckwheat Eriogonum bifurcatum
ERCO Las Vegas Buckwheat Eriogonum corymbosum var. nilesii
ERVI Sticky Buckwheat Eriogonum viscidulum
GOAG Mojave Desert tortoise Gopherus agassizii
LALU Loggerhead Shrike Lanius ludovicianu
PEAL White-margined Beardtongue Penstemon albomarginatus
TOBE Bendire’s thrasher Toxostoma bendirei
TOLE Le Conte’s thrasher Toxostoma lecontei
VIBE Loggerhead shrike Lanius ludovicianus

Table 3. Vegetation layer Groups, “Tmp Names” and Rasterized values used in modeling for thevegetation included models.RasterValue GROUP “Tmp Name”
0 Californian Forest & Woodland Californian Broadleaf Forest and Woodland1 Developed Land Use and Development2 North American Warm Desert Scrub & Grassland North American Warm Desert Ruderal Grassland
3 Rocky Mountain Forest & Woodland Inter-Mountain Basins Subalpine Limber-Bristlecone PineWoodland
4 Southwestern North American Warm DesertFreshwater Marsh & Bosque North American Warm Desert Riparian Low Bosque andShrubland5 Urban Interface Mojave Desert Scrub Urban Interface Mojave Desert Scrub6 Vacant Transisitional Lands7 Vacant or Cleared Land Use and Development8 Water Canals and Other Man-made Watercourses9 Western North American Alpine Tundra North American Desert Alkaline-Saline Marsh and Playa
10 Western North American Cool Semi-Desert Scrub& Grassland Great Basin-Intermountain Tall Sagebrush Steppe andShrubland
11 Western North American Grassland & Shrubland Southern Rocky Mountain Mountain-mahogany - MixedFoothill Shrubland12 Western North American Interior Chaparral Western Madrean Chaparral
13 Western North American Interior Flooded Forest Western Interior Riparian Forest and Woodland and InteriorWest Ruderal Riparian Forest and Scrub
14 Western North American Pinyon - JuniperWoodland & Scrub Colorado Plateau - Great Basin Juniper Open Woodland
15 Western North American Temperate FreshwaterMarsh, Wet Meadow & Shrubland Rocky Mountain Alpine-Montane Wet Meadow

Model outputs and performance tables for each are given below..



ANLE – Sticky Ringstem

Figure 1 – Models for ANLE – withenvironmental raster layers only (left) and with the inclusion of the vegetation layer (right).
The Sticky Ringstem model had high overall performance – where AUC, BI, and TSS all had highvalues with minimal losses between training and testing data. (Table 4). With the inclusion ofvegetation the model performance appeared high (perhaps too high) (Table 5). The models bothindicated higher habitat values in the Muddy River/Moapa area, and near Lake Mead (wherevisible in the vegetation model), but the vegetation influenced model had reduced predictedhabitat in the area west of Las Vegas (Figure 1). This reduction appears to be more closelyaligned with the foot print of the localities used in modeling in this case (Figure 2).

Figure 2 – Model for ANLE with the inclusion of the vegetation layer showing localities for thespecies used for modeling and testing. Note the localities in the Lake Mead area with nounderlying values could not be used in modeling.



Table 4 performance metrics for ANLE. AUC (Area under Curve), BI – (Boyce Index), TSS (true skillstatistic) were each calculated independently for Training and Testing data, and using all points.
Model AUC_Training AUC_Testing AUC_All BI_Training BI_Testing BI_All TSS_Training TSS_Testing TSS_All
EM 1 0.98 1 0.98 0.8 0.97 1 0.83 0.97
GAM 1 0.95 0.99 0.49 0.48 0.58 1 0.83 0.95
RF 1 0.98 1 0.97 0.9 0.96 1 0.83 0.97
MX 0.99 0.98 0.99 0.98 0.96 0.99 0.91 0.88 0.89
GBM 1 0.93 0.99 0.85 0.57 0.84 1 0.83 0.97

Table 5 performance metrics for ANLE with vegetation model. AUC (Area under Curve), BI –(Boyce Index), TSS (true skill statistic) were each calculated independently for Training andTesting data, and using all points.
Model AUC_Training AUC_Testing AUC_All BI_Training BI_Testing BI_All TSS_Training TSS_Testing TSS_All
EM 1 1 1 0.87 0.86 0.96 1 0.95 0.99
RF 1 1 1 0.93 0.96 0.97 1 0.95 0.99
GBM 1 1 1 0.86 0.85 0.91 1 0.95 0.99

Importance of the individual environmental layers indicated different variables among thedifferent algorithms, highlighting the importance of using the ensemble of multiple algorithms.The final ensemble model (Figure 1) was composed from weighted models of 12 RF, 12 Maxent,12 GBM, and 6 GAM models. Slope was the lowest performing variable, and was below 10%importance in all algorithms (Table 6). Minimum and maximum temperatures, as well as the soilgypsum content were the variables that had the greatest influence (Table 5).
The models including vegetation (20 RF and 20 GBM) indicated shifts in variable importancerelative to the base models. The GBM, which showed very little importance of the vegetationlayer (Table 7) had the highest importance for Ave Spring Max Temp, and an increase in SoilGypsum, which dominated the models. The RF importance showed 2.4% importance for thevegetation layer, with increased importance of Average Minimum Temperature, SpringTemperatures, Soil Gypsum, and NDVI Amplitude (Table 7).
Table 6. Relative importance of the input variables used in modeling for ANLE
Variable GAM GBM RF MX
Ave Min Temp 37.6 6.7 16.8 42.7
Ave Spring Max Temp 35.9 27 28.4 5.1
Soil gypsum 5.3 65.5 31.9 25.9
NDVI Amplitude 2 0.7 14.5 9.8
Silt 10.7 0 4 8.2
Slope 8.4 0 4.3 8.5

Table 7. Relative importance of the input variables used in modeling for ANLE with the vegetation layer.
Variable GBM RF
Ave Min Temp 0 10.6
Ave Spring Max Temp 32.4 27.4
Soil gypsum 61.8 29.2
NDVI Amplitude 5.8 19.2
Silt 0 5.5
Slope 0 5.8
Veg 0 2.4



Figure 3. Vegetation types associated with ANLE Point locations.
ANLE points were largely located with in The North American Warm Desert Scrub & Grasslandfollowed by Western North American Cool Semi-Desert Scrub & Grassland (Figure 3).



AQCH – Golden eagle

Figure 4. Ensemble Model for AQCH. Without the Vegetation Layer.

Figure 5. Ensemble Models for AQCH. Including the Vegetation LayerThe models for Golden Eagle nesting sites generally performed well, although the GBM and GAMmodels had a lower score for the Boyce index for both the training and especially testing



datasets (Table 8). The models with vegetation include had very similar performance statistics(Table 9), but showed a far more restrained habitat prediction relative to the non vegetationmodels (Figures 4 and 5). The habit values in the “No Veg” models at the localities trended lower,(P - 0.01), where the models including vegetation had more points with max model valuesattributed (Figure 6).
Table 8. Performance metrics for AQCH. AUC (Area under Curve), BI – (Boyce Index), TSS (true
skill statistic) were each calculated independently for Training and Testing data and using all
points.

Model AUC
Training

AUC
Testing

AUC
All

BI
Training

BI
Testing

BI
All

TSS
Training

TSS
Testing

TSS
All

EM 1 0.98 1 0.98 0.91 0.98 0.97 0.89 0.94
GBM 1 0.98 0.99 0.79 0.53 0.9 0.96 0.89 0.92
RF 1 0.97 1 0.98 0.93 0.99 0.99 0.87 0.97
GAM 1 0.98 0.99 0.83 0.41 0.91 0.96 0.87 0.94
MX 0.98 0.96 0.97 0.94 0.95 0.96 0.84 0.78 0.82

Table 9. Performance metrics for AQCH models including vegetation. AUC (Area under Curve), BI
– (Boyce Index), TSS (true skill statistic) were each calculated independently for Training and
Testing data and using all points.
Model AUC

Training
AUC
Testing

AUC
All

BI
Training

BI
Testing

BI
All

TSS
Training

TSS
Testing

TSS
All

EM 1 0.93 0.99 0.98 0.84 0.94 1 0.79 0.96
RF 1 0.94 0.99 0.99 0.91 0.99 1 0.85 0.97
GBM 1 0.92 0.99 0.97 0.55 0.89 1 0.74 0.95

Figure 6. Modeled habitat values for the AQCH Ensemble Models with and without the inclusionof the Vegetation layer.



All of the algorithms generally had a good spread of variable inclusion (Table 10). Variable
importance indicated that the Distance to Cliffs variable had the lowest contributions, which was
opposite of our expectation. Each of the remaining input variables had contributions over 15%
for at least one of the algorithms, and Average Spring Max Temp, and slope and the two
temperature measures had contributions of 39% or higher. The models including vegetation had
moderate dependence on the vegetation layer, with 8 and 7% importance, and the GBM models
(N=20) showed increased importance of Topographic index, but with inclusion of all variables
with the exception of Minimum Temperature, Distance to Cliffs, and Depth to Bedrock (Table
10). The Random forest models (N=20) had a more balanced inclusion of the environmental
variables (Table 11).
Table 10. Relative importance of the input variables used in modeling for AQCH for the models
without the vegetation layer.
Variable GBM RF GAM MX
Ave Min Temp 0 12.4 20.6 32.5
Average Spring Max Temp 30 22.5 18.8 28.8
Silt 0 6.2 16.1 12.3
Slope 40.2 21.7 16.1 4
Topographic Index 27.4 18.3 8.9 21.4
Depth to Bedrock 2.4 15.6 17.2 0
Distance to Cliffs 0 3.3 2.5 1

Table 11. Relative importance of the input variables used in modeling for AQCH for the models
including the vegetation layer.
Variable GBM RF
Ave Min Temp 0 9.4
Average Spring Max Temp 6.6 16.3
Silt 10.7 13.2
Slope 11.5 15.1
Topographic Index 62.9 20.1
Depth to Bedrock 0.3 10.4
Distance to Cliffs 1 7.4
Vegetation 7 8.1

The ensemble model without vegetation was comprised of 18 Random Forest models, 5 GAM
models, with 10 MaxEnt, and 11 GBM models contributing. The ensemble model for the models
with vegetation included contained 13 RF and 2 GBM models.
Vegetation associated with AQCH localities was largely composed of North American Warm
Desert Scrub & Grassland, and Western North American Cool Semi-Desert Scrub & Grassland
(Figure 7).



Figure 7. Relative frequency of vegetation associations at the locality point locations.



ARCA - Las Vegas Bearpoppy

Figure 8 – Ensemble Model for ARCA
The Las Vegas Bearpoppy model had extremely high performance measures for both training andtesting evaluations, and across all three performance metrics (Table 12). The models with thevegetation layer included had similarly high performance (Table 13), and the predicted habitatappeared to be very similar between models when comparing the areas that had vegetationinformation where prediction was possible (Figure 9).

Figure 9. Ensemble model (Left), and the model with the vegetation layer included (Right) forARCA.



Table 12. Performance metrics for ARCA. AUC (Area under Curve), BI – (Boyce Index), TSS (trueskill statistic) were each calculated independently for Training and Testing data, and using allpoints.
Model AUC_Training AUC_Testing AUC_All BI_Training BI_Testing BI_All TSS_Training TSS_Testing TSS_All
EM 1 0.99 1 1 0.96 1 0.96 0.94 0.95
GAM 0.98 0.99 0.98 0.98 0.97 0.99 0.89 0.9 0.89
RF 1 0.99 1 0.99 0.93 0.97 1 0.95 0.98
MX 0.98 0.99 0.98 0.99 0.99 0.99 0.88 0.9 0.88
GBM 0.99 0.99 0.99 0.99 0.98 0.99 0.91 0.93 0.92

Table 13. Performance metrics for ARCA with the vegetation layer included. AUC (Area underCurve), BI – (Boyce Index), TSS (true skill statistic) were each calculated independently forTraining and Testing data, and using all points.
Model AUC_Training AUC_Testing AUC_All BI_Training BI_Testing BI_All TSS_Training TSS_Testing TSS_All
EM 1 1 1 0.99 0.95 0.97 1 0.93 0.99
RF 1 1 1 0.99 0.95 0.97 1 0.93 0.99
Model importance showed that each of the selected variables had high contribution in at leastone of the models (e.g. silt in the GAM model), The Average Spring Max Temperature, and theSoil Gypsum content were among the highest contributors, although the MaxEnt modelsdepended heavily on the variability in winter precipitation (Table 14).
Table 14. Relative importance of the input variables used in modeling for ARCA.
Variable GAM GBM RF MX
Average Spring Max Temp 21.5 39 26.2 8.5
Soil gypsum 8.7 56.3 28.9 9.8
NDVI Amplitude 18.7 1.8 14 1.3
Silt 20.9 0 7.4 2.3
CV Winter Precip 30.3 2.9 23.5 78.1

The high performing models with vegetation included only those using Random Forest. The RFmodel showed a relatively even inclusion of the Environmental variables, however, thevegetation layer showed little importance to the models (Table 15) (Table 15).

Figure 10. Relative frequency of vegetation associations at the locality point locations.



Table 15, Relative importance of the input variables used in modeling for ARCA with thevegetation layer included.
Variable RF
Average Spring Max Temp 23.70
Soil gypsum 33.06
NDVI Amplitude 19.52
Silt 8.58
CV Winter Precip 13.54
Veg14 1.60

ARCA locations were largely located within North American Warm Desert Scrub & Grassland ,with lower presence in Western North American Cool Semi-Desert Scrub & Grassland and landsclassified as Development (Figure 10).
There were 19 random forest, 6 GAM, 10 gbm, and 5 maxent models that contributed to theensemble model. The vegetation based models included20 RF models.



ASGETR – Three Corner Milkvetch

Figure 11 – Ensemble Model for ASGETR – without the vegetation layer included.

Figure 12 – Ensemble Model for ASGETR with the vegetation layer included.



The Ensemble model for ASGETR had the majority of habitat predicted for the area in thenortheastern extent of Clark County – especially in the Virgin/Muddy River area, Mormon Mesa,and Moapa (Figure 11). The models with the vegetation layer included had very similar habitatprojections (Figure 12).
Performance was mixed for ASGETR – with very high AUC/BI, and TSS scores for somealgorithms, and with poor performance in others (e.g. GAMs, Table 16). Performance wassimilarly high for AUC and TSS in the models where the vegetation layers were included (Table17). However, the Boyce index for the testing data had much lower scores (Table 17).
Table 16. Performance metrics for ASGETR. AUC (Area under Curve), BI – (Boyce Index), TSS (trueskill statistic) were each calculated independently for Training and Testing data, and using allpoints.
Model AUC_Training AUC_Testing AUC_All BI_Training BI_Testing BI_All TSS_Training TSS_Testing TSS_All
EM 1 1 1 0.99 0.95 0.99 1 0.93 0.98
GAM 1 0.99 1 NA -1 -1 0.99 0.96 0.98
RF 1 0.99 1 0.98 0.84 0.97 1 0.94 0.99
MX 0.99 0.99 0.99 0.99 0.95 0.99 0.93 0.94 0.93
GBM 1 0.99 1 0.84 0.74 0.93 1 0.93 0.98

Table 17. Performance metrics for ASGETR with the vegetation layer included. AUC (Area underCurve), BI – (Boyce Index), TSS (true skill statistic) were each calculated independently forTraining and Testing data, and using all points.
Model AUC_Training AUC_Testing AUC_All BI_Training BI_Testing BI_All TSS_Training TSS_Testing TSS_All
EM 1 1 1 0.96 0.57 0.89 1 0.98 0.99
RF 1 1 1 0.99 0.8 0.98 1 0.97 0.99
GBM 1 1 1 0.82 0.31 0.9 0.99 0.97 0.98

Variable importance indicated that all of the 6 variables considered had > 10 percent importancefor at least one algorithm. The MaxEnt appeared to have a poor fit, despite high performancemetrics, as it essentially relied only on the Silica Index (Table 18). This variable also performedhigh in the GBM model, which also considered winter precipitation, while the GAM and RFalgorithms had more even consideration of the variables used for modeling. In the modelsincluding vegetation the GBM model included only the Silica Index, with ~ 1% inclusion of thewinter precipitation layer. The RF model had 4% importance attributed to the vegetation layer,with larger importance attributed to several other variables (Table 19).
Table 18. Relative importance of the input variables used in modeling for ASGETR
Variable GAM GBM RF MX
Winter precipitation 13.5 8.7 22.2 0
Winter minimum temperature 26.7 0 10.9 0
NDVI amplitude 11 1.9 13.7 0
Slope 16.1 0 4.6 0.2
Silica index 17.1 89.4 37.6 99.7
Sandy soils 15.8 0 11.1 0.1



Table 19. Relative importance of the input variables used in modeling for ASGETR withvegetation models included.
Variable GBM RF
Winter precipitation 1.1 20.8
Winter minimum temperature 0 6.5
NDVI amplitude 0 9.3
Slope 0 7.2
Silica index 98.9 41.1
Sandy soils 0 11.1
Vegetation 0 4

The ASETR ensemble model was comprised of 14 Random Forest, 11 Maxent, 14 GBM, and 1GAM model (which explains the poor performance metrics for GAM). The models including thevegetation layer were composed of 14 RF and 10 GBM models.

Figure 13. Relative frequency of vegetation associations at the locality point locations forASGETR.
Vegetation associated with ASGETR localities was largely within North American Warm DesertScrub & Grassland (Figure 13).



ATCU – Burrowing Owl

Figure 14 – Model for ATCU without vegetation included.

Figure 15 – Model for ATCU with the vegetation layer included.



The Burrowing Owl model showed a similar habitat prediction for both the models with andwithout vegetation (Figures 15 and 14 respectviely). Model performance for the burrowing owlmodels was mixed, with high performance for training data in all algorithms, but with lowertesting performance for the Boyce index for the GAM model, and with lower TSS for testing setsin the GAM and Maxent models (Table 20). The GBM model had lower performance for themodels including vegetation (Table 21), with lower AUC, and BI for the Testing dataset. The RFmodel performed well for most metrics (Table 21).
Table 20. performance metrics for ATCU. AUC (Area under Curve), BI – (Boyce Index), TSS (trueskill statistic) were each calculated independently for Training and Testing data, and using allpoints.
Model AUC_Training AUC_Testing AUC_All BI_Training BI_Testing BI_All TSS_Training TSS_Testing TSS_All
EM 1 0.95 0.99 0.88 0.68 0.94 0.98 0.8 0.93
GAM 0.99 0.92 0.98 0.76 0.32 0.75 0.9 0.73 0.85
RF 1 0.96 0.99 0.81 0.72 0.93 1 0.86 0.95
MX 0.98 0.92 0.97 0.9 0.76 0.9 0.9 0.73 0.85
GBM 1 0.95 0.99 0.89 0.65 0.93 0.98 0.84 0.94

Table 21. performance metrics for ATCU models including the vegetation layer. AUC (Area underCurve), BI – (Boyce Index), TSS (true skill statistic) were each calculated independently forTraining and Testing data, and using all points.
Model AUC_Training AUC_Testing AUC_All BI_Training BI_Testing BI_All TSS_Training TSS_Testing TSS_All
EM 1 0.95 0.99 0.97 0.9 0.98 1 0.86 0.97
RF 1 0.95 0.99 0.99 0.9 0.96 1 0.86 0.97
GBM 1 0.94 0.99 0.96 0.67 0.96 0.94 0.79 0.91

Variable importance indicated high inclusion of most variables, although with differentimportance among algorithms (Table 22). The GBM model essentially modeled using three of thesix variables, while the MaxEnt model largely relied on only three. The models includingvegetation had moderate importance attributed to vegetation (Table 23). The GBM model waslargely slow based, while the RF had a more balanced importance among the environmentallayers, and 10% attributed to vegetation (Table 23).
Table 22. Relative importance of the input variables used in modeling for ATCU
Variable GAM GBM RF MX
Winter precipitation 7.3 32.6 26.8 1.3
Winter minimum temperature 23.6 20.7 26.4 39
NDVI amplitude 17.3 0 6.9 13.8
Slope 17.9 46.7 32.8 43.5
Coarse Fragments 33.9 0 7.1 2.5

Table 23. Relative importance of the input variables used in modeling for ATCU with thevegetation layer included
Variable GBM RF
Winter precipitation 4.5 20.8
Winter minimum temperature 8.1 17.1
NDVI amplitude 0 6.9
Slope 85.4 37
Coarse Fragments 0 8
Vegetation 1.9 10.1

Localities for Burrowing Owls had the highest association with North American Warm DesertScrub & Grassland, and interestingly Land Use and Development was the second highest,followed by Western North American Cool Semi-Desert Scrub & Grassland (Figure 16). Severalother vegetation types had limited association with the localities.



Figure 16. Relative frequency of vegetation associations at the locality point locations for ATCU.
The model contribution toward the ensemble model was comprised of 17 random forestmodels,7 MaxEnt models, 5 GAM models, and 13 GBM models. The models using vegetationincluded 20 RF, and 3 GBM models.



CHPE – Desert Pocket Mouse

Figure 17 – Ensemble Model for CHPE – for models not including the vegetation layer.

Figure 18 – Ensemble Model for CHPE – for models including the vegetation layer.



The models including the vegetation layer for CHPE had similar predicted habitat relative to thebase models (Figures 17 and 18). There were notable reductions west of the confluence of theMuddy and Virgin rivers, and a significant retraction in the southern part of the county (Figures17 and 18). There was also a reduced level of prediction throughout the county, although theoverall suitability levels were not different between models (p= 0.85).

Figure 19. Model values for the Ensemble models with and without vegetation included.
The base models for the Desert Pocket Mouse generally performed well, although the GAMmodel had lower scored for the Boyce index (Training and Testing), and the GBM model had poorperformance in the testing set for the Boyce Index (Table 24). The models including vegetationhad similarly high performance,the BI for the testing data had poor performance (Table 25).
Table 24. performance metrics for CHPE models without vegetation. AUC (Area under Curve), BI– (Boyce Index), TSS (true skill statistic) were each calculated independently for Training andTesting data, and using all points.
Model AUC_Training AUC_Testing AUC_All BI_Training BI_Testing BI_All TSS_Training TSS_Testing TSS_All
EM 1 0.97 1 0.99 0.78 0.85 1 0.88 0.97
gam 1 0.96 0.99 0.29 0.47 0.47 0.98 0.81 0.95
rf 1 0.96 1 0.97 0.89 0.92 1 0.81 0.96
mx 0.99 0.95 0.98 0.93 0.94 0.97 0.87 0.81 0.86
gbm 1 0.96 1 0.84 0.26 0.78 1 0.81 0.96

Table 25. performance metrics for CHPE models including vegetation. AUC (Area under Curve), BI– (Boyce Index), TSS (true skill statistic) were each calculated independently for Training andTesting data, and using all points.
Model AUC_Training AUC_Testing AUC_All BI_Training BI_Testing BI_All TSS_Training TSS_Testing TSS_All
EM 1 0.94 1 0.99 0.3 0.98 1 0.78 0.94
RF 1 0.93 1 0.98 0.45 0.97 1 0.78 0.96
GBM 1 0.94 0.99 0.98 0.45 0.93 1 0.78 0.94



Model variable importance indicated that Silt, average minimum temperature, and the variabilityin winter precipitation were all important in at least one model. Despite being used in previousmodels the NDVI measures of start of season (an NDVI measure of plant growth initiation), andthe peak value did not contribute importantly in any algorithm, and percent of clay alsocontributed minimally (Table 26) .Of the remaining variables Average Minimum Temperatureand the CV in winter precipitation had the highest contributions, although it should be notedthat the MaxEnt model again relied heavily on only one variable, which typically indicates poormodel fit. The models including the vegetation layer had high importance attributed tovegetation (Table 27) – where the GBM model importance shifted away from Average MinimumTemperature, and Silt, and the importance for variables within the RF model remained morebalanced (Table 27).
Table 26. Relative importance of the input variables used in modeling for CHPE
Variable GAM GBM RF MX
Winter Precip 2.7 3.8 13.2 0.3
Start of Season (day) 0 0 4.7 0.3
PPT Clay 4.1 1.2 7.3 1
CV Winter Precip 14.5 1.9 11.8 90.6
PCT Coarse frags 18 5 10.4 0.3
Ave Min Temp 30 68.4 28.2 5.9
NDVI Max 4.6 0.6 7.6 0.1
PPT Silt 26.1 19.1 16.7 1.6

Table 27. Relative importance of the input variables used in modeling for CHPE for modelsincluding the vegetation layer.
Variable GBM RF
Winter Precip 53.5 21.9
Start of Season (day) 0 6.2
PPT Clay 0 6.4
CV Winter Precip 1.4 9.4
PCT Coarse frags 3 9.8
Ave Min Temp 9.3 11.7
NDVI Max 1 8.6
PPT Silt 0.4 9
Vegetation 31.3 17

Figure 20. Relative frequency of vegetation associations at the locality point locations for CHPE.



Vegetation associated with CHPE localities was generally comprised of North American WarmDesert Scrub & Grassland, Land Use and Development, and Western North American InteriorFlooded Forest to a lesser extent (Figure 20).
Contributions of algorithms toward the ensemble model consisted of 19 random forest models,11 MaxEnt models, 2 GAM models, and 10 GBM models. Ensemble Models including vegetationconsisted of 13 RF and 12 GBM models.



COCH – Gilded Flicker

Figure 21 – Ensemble Model for Gilded Flicker
Predicted habitat differed somewhat between the base Ensemble Models (Figure 21), and thosewith vegetation included (Figure 22). The models withe vegetation included had a reduction inpredicted habitat in the northern portions of the county, with predictions in the south – wheremost localities were – remaining similar between the models.

Figure 22. Ensemble Model with vegetation included for Gilded Flicker



Model performance was high for all algorithms with an extremely low score for the Boyce indexfor the testing dataset (Table 28). All other algorithms were very high in all areas. The modelsincluding vegetation had similar performance metrics (Table 29).
Table 28. performance metrics for COCH. AUC (Area under Curve), BI – (Boyce Index), TSS (trueskill statistic) were each calculated independently for Training and Testing data, and using allpoints.
Model AUC_Training AUC_Testing AUC_All BI_Training BI_Testing BI_All TSS_Training TSS_Testing TSS_All
EM 1 0.96 0.99 0.95 0.79 0.98 1 0.81 0.95
gam 0.99 0.94 0.98 0.9 0.13 0.93 0.93 0.81 0.9
rf 1 0.98 1 0.98 0.8 0.99 1 0.87 0.97
mx 0.97 0.91 0.96 0.89 0.85 0.87 0.87 0.81 0.86
gbm 1 0.94 0.99 0.77 0.84 0.92 0.99 0.78 0.95

Table 29. performance metrics for COCH for models including vegetation. AUC (Area underCurve), BI – (Boyce Index), TSS (true skill statistic) were each calculated independently forTraining and Testing data, and using all points.
Model AUC_Training AUC_Testing AUC_All BI_Training BI_Testing BI_All TSS_Training TSS_Testing TSS_All
EM 1 0.99 1 0.98 0.8 0.97 1 0.91 0.98
RF 1 1 1 0.92 0.88 0.97 1 1 0.98
GBM 1 0.99 1 1 0.8 0.83 1 0.91 0.98

Variable importance indicated again that NDVI measures had the lowest contributions. Maxentagain focused on a single variable model, and GBM largely on two, while the GAM and Randomforest had more even consideration of input variables (Table 30). Winter precipitation, andtopography measures had high contributions. For the models including vegetation there washigh importance associated with that layer as well (Table 31). The GBM models were essentiallydriven by 3/4 input variables, while the RF models were more balanced, similarly to itsperformance among other species modeled herein.
Table 30. Relative importance of the input variables used in modeling for COCH
Variable GAM GBM RF MX
Dist to cliffs 18.4 0 4.6 0
NDVI Length of Season 4.5 0 5.5 0
NDVI Max 3.4 0.6 8.6 0
Winter Precip 27.6 11.1 17.7 0.1
CV Winter Precip 33.3 80 35 98.7
Slope 7.5 4 15.4 1.2
Flow Accum 5.4 4.4 13.1 0

Table 31. Relative importance of the input variables used in modeling for COCH for modelsincluding vegetation.
Variable GBM RF
Dist to cliffs 0 3.1
NDVI Amplitude 7.6 14.9
NDVI Length of Season 0 3.2
NDVI Max 0 6.4
Winter Precip 45.7 26.8
CV Winter Precip 25.8 18.5
Slope 5 9.2
Flow Accum 1.1 5.9
Vegetation 14.8 12

The ensemble model was comprised of 15 Random Forest models, 14 GBM models, with 9MaxEnt, and 4 GAM models contributing. The vegetation ensemble model consisted of 20 eachof RF and GBM models.
The vegetation associated with the localities for COCH was largely within Western North



American Cool Semi-Desert Scrub & Grassland, and North American Warm Desert Scrub &Grassland (Figure 23).

Figure 23. Relative frequency of vegetation associations at the locality point locations for COCH.



ENAR – Silverleaf sunray

Figure 24. Ensemble Model for ENAR

Figure 25. Vegetation included ensemble model output for ENAR.



Models for ENAR have very similar appearance for based model, and the vegetation inclusionmodel with predicted range reduction in southern portion of the county (Figures 24 and 25). Themodels generally performed well, although for the base models the GBM model had a lowerscore for the Boyce index (testing dataset), and the GAM model had slightly poorer performancein the testing set for the Boyce Index compared to other algorithms (Table 32). The modelsincluding vegetation also had high performance (Table 33).
Table 32. Performance metrics for the base models for ENAR. AUC (Area under Curve), BI –(Boyce Index), TSS (true skill statistic) were each calculated independently for Training andTesting data and using all points.
Model AUC_Training AUC_Testing AUC_All BI_Training BI_Testing BI_All TSS_Training TSS_Testing TSS_All
EM 1 0.99 1 0.99 0.95 0.99 0.97 0.88 0.95
GAM 0.99 0.97 0.98 0.98 0.81 0.96 0.89 0.81 0.87
RF 1 0.99 1 1 0.87 0.93 1 0.89 0.98
MX 0.98 0.96 0.97 1 0.97 1 0.84 0.81 0.82
GBM 1 0.98 0.99 0.95 0.63 0.93 0.95 0.87 0.94

Table 33. Performance metrics for the vegetation inclusion models for ENAR. AUC (Area underCurve), BI – (Boyce Index), TSS (true skill statistic) were each calculated independently forTraining and Testing data and using all points.
Model AUC_Training AUC_Testing AUC_All BI_Training BI_Testing BI_All TSS_Training TSS_Testing TSS_All
EM 1 0.98 1 0.91 0.77 0.79 1 0.89 0.98
RF 1 0.98 1 0.88 0.84 0.82 1 0.89 0.98
GBM 1 0.93 0.99 0.99 0.95 0.99 1 0.89 0.98

Variable importance indicated that NDVI measures had the lowest contributions. The Maxentalgorithm was based on a single variable (topographic roughness) indicating potentially poormodel fit, and GBM largely on two variables (winter minimum temperature and gypsumpotential), while the GAM and Random forest had more even consideration of input variables(Table 4). Winter precipitation, winter minimum temperature, and gypsum potential measureshad high contributions towards GAM and Random forest models. Models including vegetationshowed vegetation as an important component for the RF, but not the GBM models (Table 35).The GBM model relied heavily on Vegetation, Winter Minimum Temperature and Gypsum, whilethe RF had a more balanced importance across the variables, with Vegetation and WinterMinimum Temperature as the highest importance (Table 35). The GBM models were largetydrive by Gypsum potential, with limited influence of NDVI and Minimum temperatures.
Table 34. Relative importance of the input variables used in base modeling for ENAR.
Variable GAM GBM RF MX
Winter min temperature 19.1 50 33.9 2.8
Gypsum potential 16.1 48.4 26.2 1.9
NDVI maximum 10.4 0.3 10.4 0.1
Surface texture (ATI) 13.2 0 6.6 0.1
Winter precipitation 27.4 1.4 14.7 0.1
Roughness (TRI) 13.8 0 8.2 95.1



Table 35. Relative importance of the input variables used in modeling for ENAR with thevegetation layer included..
Variable GBM RF
Winter min temperature 4.9 15.3
Gypsum potential 87.8 35.3
NDVI maximum 6.7 17.5
Surface texture (ATI) 0 10.7
Winter precipitation 0 6.6
Roughness (TRI) 0 7.6
Vegetation 0.6 7.1

Figure 26. Relative frequency of vegetation associations at the locality point locations for ENAR.
The vegetation associated with ENAR localities was largely North American Warm Desert Scrub &Grassland, with smaller elements Western North American Cool Semi-Desert Scrub & Grasslandand other elements (Figure 26).
The ensemble model was comprised of 17 Random Forest models, 7 GAM models, with 4MaxEnt, and 12 GBM models contributing. For the vegetation inclusion models there were 20 RFand 20 GBM models used in the ensemble.



ERBI – Pahrump Valley buckwheat

Figure 27. Ensemble base Model for ERBI.

Figure 28. Ensemble base Model for ERBI.



The models for Pahrump Valley buckwheat predict similar habitat footprints (Figures 26 and 27).The ensemble model including vegetation also predicts habitat near the Corn Creek area (Figure27), suggesting suitable habitat along the US 95 corridor as is seen in the models withoutvegetation (Figure 26), but the vegetation model only includes a portion of this area in the plantclassification conducted to date. The models generally performed well, although the GBM in thebase model had a lower score for the Boyce index (testing and training dataset), and the GAMmodel had much poorer performance in the testing set for the Boyce Index compared to otheralgorithms in the base models (Table 36). The models including vegetation showed highperformance with the exception of the Boyce index for the GBM models, which had low valuesfor both the training and testing data (Table 37). This is reflected in the Boyce Index Curvesshown for this model (Figure 28), although it should be noted that the ensemble model BIremains high (Table 37), and has an excellent BI curve indicating good model discrimination(Figure 29).
Table 36. Performance metrics for ERBI. AUC (Area under Curve), BI – (Boyce Index), TSS (trueskill statistic) were each calculated independently for Training and Testing data and using allpoints.
Model AUC_Training AUC_Testing AUC_All BI_Training BI_Testing BI_All TSS_Training TSS_Testing TSS_All
EM 1 0.99 1 0.95 0.95 0.98 1 0.94 0.98
GAM 1 0.99 1 0.55 0.82 0.89 0.98 0.88 0.96
RF 1 0.99 1 0.74 0.9 0.9 1 0.94 0.99
MX 1 0.99 0.99 0.96 0.92 0.95 0.93 0.94 0.93
GBM 1 0.99 1 0.06 0.88 0.77 1 0.94 0.99
Table 37. Performance metrics for the vegetation inclusion models for ERBI. AUC (Area underCurve), BI – (Boyce Index), TSS (true skill statistic) were each calculated independently forTraining and Testing data and using all points.
Model AUC_Training AUC_Testing AUC_All BI_Training BI_Testing BI_All TSS_Training TSS_Testing TSS_All
EM 1 1 1 0.97 0.83 0.87 1 1 1
RF 1 1 1 0.78 0.77 0.91 1 1 0.98
GBM 1 1 1 0.91 0.29 0.82 1 1 1



Figure 29. Continuous Boyce Index plots for the overall Ensemble vegetation model (Top), andthe Random Forest (RF) models and GBM models used in the ensemble.
Variable importance for the base models indicated that the percent silt covariate had the lowestcontributions across most models. Average maximum temperature, extreme minimumtemperature, and slope had high contributions and were important across several algorithms(Table 38). For the models including vegetation the GBM shifted moderate importance to thevegetation layer, Slope, and the Extreme Minimum Temperature layer – with 0 importance forother layers (Table 39). The Random Forest model for the vegetation approach showed a 11%importance for the vegetation layer, with importance attributed to all other variables of at least5% (Table 39).
Table 38. Relative importance of the input variables used in modeling for ERBI.
Variable GAM GBM RF MX
Ave Max Temp 23.6 12.8 28.1 44.2
Clay 20.5 0 5.6 5.8
Extreme Min Temp 32.6 14.4 25.1 40
Silt 14.7 0 4.1 2
Slope 8.5 72.8 37.1 8

Table 39. Relative importance of the input variables used in modeling for ERBI.
Variable GBM RF
Ave Max Temp 6.8 24.3
Clay 0 5
Extreme Min Temp 18.2 23
Silt 0 5
Slope 67.4 30.8
Vegetation 7.6 11.9



Vegetation associated with the ERBI localities was largely North American Warm Desert Scrub &Grassland (Figure 30).

Figure 30. Relative frequency of vegetation associations at the locality point locations for ERBI.
The ensemble model was comprised of 14 Random Forest models, 6 GAM models, with 8MaxEnt, and 12 GBM models contributing. The ensemble models including vegetation were 20each of RF and GBM algorithms.



ERCO – Las Vegas buckwheat

Figure 31. Ensemble Model for the base model approach for ERCO.

Figure 32. Ensemble Model for the vegetation inclusion models for ERCO.



The Las Vegas buckwheat model had a similar footprint of predicted habitat for both the basemodel (Figure 31) and the models including vegetation (Figure 32). The base model had highoverall performance – where AUC, BI, and TSS all had high values with minimal losses betweentraining and testing data (Table 40). The GAM and GBM models evaluated with the testingdataset had lower BI scores than other algorithms, with the GAM model having especially lowscores (Table 40). The models including vegetation had high performance (Table 41).
Table 40. Performance metrics for ERCO. AUC (Area under Curve), BI – (Boyce Index), TSS (trueskill statistic) were each calculated independently for Training and Testing data and using allpoints.
Model AUC_Training AUC_Testing AUC_All BI_Training BI_Testing BI_All TSS_Training TSS_Testing TSS_All
EM 1 0.98 1 0.92 0.9 0.97 1 0.9 0.98
GAM 1 0.97 0.99 0.87 0.34 0.85 0.99 0.9 0.97
RF 1 0.99 1 0.98 0.89 0.98 1 0.88 0.98
MX 0.99 0.97 0.99 0.98 0.92 0.99 0.92 0.85 0.9
GBM 1 0.98 1 0.88 0.68 0.83 1 0.9 0.98
Table 41. Performance metrics for ERCO with the vegetation layer included. AUC (Area underCurve), BI – (Boyce Index), TSS (true skill statistic) were each calculated independently forTraining and Testing data and using all points.
Model AUC_Training AUC_Testing AUC_All BI_Training BI_Testing BI_All TSS_Training TSS_Testing TSS_All
EM 1 1 1 0.97 0.82 0.95 1 0.97 0.99
RF 1 1 1 0.94 0.8 0.98 1 1 1
GBM 1 0.99 1 0.93 0.97 0.98 0.99 0.94 0.98

Variable importance indicated that maximum NDVI had low contributions towards all models(Table 42). The MaxEnt model was a single variable model, and GBM was largely dependent onthree variables. The other models had contributions from all variables, with CV of winterprecipitation and average maximum temperature contributing the most (Table 42). The modelsincluding vegetation showed mixed importance of the vegetation layer, with the GBM modelshowing 25%, and the RF models with 14% (Table 43). Both the GBM and RF had influence ofseveral variables with Average Maximum Temperature and Gypsum as two of the highestperforming variable for both (Table 43).
Table 42. Relative importance of the input variables used in modeling for ERCO.
Variable GAM GBM RF MX
Ave Max Temp 20.9 34.3 25.3 1.6
Soil gypsum 3.6 47 24.3 2.2
NDVI Amplitude 12.6 15.4 16.9 7.8
NDVI Max 2.1 0 5.1 0.2
Silt 7.2 0.7 9.6 4.9
Start of Season (day) 20.4 2.6 10.4 0.4
CV Winter Precip 33.2 0 8.4 82.9



Table 43. Relative importance of the input variables used in modeling for ERCO with thevegetation layer included.
Variable GBM RF
Ave Max Temp 16.3 21.3
Soil gypsum 29.5 17
NDVI Amplitude 16.9 15.2
NDVI Max 0 4.7
Silt 0.3 7.9
Start of Season (day) 12.4 12.5
CV Winter Precip 0 7.7
Vegetation 24.7 13.6

Figure 33. Relative frequency of vegetation associations at the locality point locations for ERCO.
The vegetation associated with ERCO localities was largely attributed to Land Use andDevelopment, with secondary attribution of North American Warm Desert Scrub & Grassland,and Western North American Cool Semi-Desert Scrub & Grassland (Figure 33).
The ensemble model was comprised of 13 Random Forest models, 2 GAM, 9 MaxEnt, and 16GBM models contributing. The vegetation inclusion ensemble model was created from acombination of 20 RF an20 GBM models.



ERVI – Sticky buckwheat

Figure 34. Ensemble Model for ERVI for the base model.

Figure 35. Ensemble Model for ERVI for the models including the vegetation layer.
The Sticky buckwheat model had somewhat similar predicted habitat for both models with andwithout vegetation (Figures 34 and 35), but with the vegetation model more closely associated



with the Muddy and Virgin River areas (Figure 35). The models had high overall performance –where AUC, BI, and TSS all had high values with minimal losses between training and testing data(Table 44). The GAM and GBM models had lower BI scores than other algorithms, with bothmodels having especially low scores for training, testing, and all data (Table 44). Theperformance for models including vegetation also had good performance for AUC and TSS, buthad poor Boyce indices when evaluated with both the testing datasets (Table 45).
Table 44. Performance metrics for ERVI. AUC (Area under Curve), BI – (Boyce Index), TSS (trueskill statistic) were each calculated independently for Training and Testing data and using allpoints.
Model AUC_Training AUC_Testing AUC_All BI_Training BI_Testing BI_All TSS_Training TSS_Testing TSS_All
EM 1 1 1 0.92 0.53 0.94 1 1 1
GAM 1 1 1 0.14 0.59 0.59 1 0.97 0.99
RF 1 1 1 0.93 0.85 0.96 1 1 1
MX 0.98 0.99 0.98 0.97 0.97 0.97 0.93 0.97 0.94
GBM 1 1 1 0.31 0.76 0.71 1 0.97 0.99

Table 45. Performance metrics for ERVI models with the vegetation layer included. AUC (Areaunder Curve), BI – (Boyce Index), TSS (true skill statistic) were each calculated independently forTraining and Testing data and using all points.
Model AUC_Training AUC_Testing AUC_All BI_Training BI_Testing BI_All TSS_Training TSS_Testing TSS_All
EM 1 0.99 1 0.9 0.74 0.93 1 0.9 0.98
RF 1 1 1 0.93 0.83 0.96 1 0.93 0.99
GBM 1 0.98 1 0.83 0.47 0.81 0.99 0.86 0.95

Average spring maximum temperature and CV of winter precipitation had generally highcontributions towards all models (Table 46). The Maxent model as well as the GBM model werelargely dependent on a single variable. However, GAM and Random Forest models weredependent on multiple variables (Table 46). Models including vegetation had moderateimportance attributed to the vegetation layer for RF only, while GBM had no attribtution. TheGBM model largely relied on three other variables (Average Spring Max Temp, coarse fragments,and variability in precipitation) – while the RF again had more balanced inclusion (Table 47).
Table 46. Relative importance of the input variables used in modeling for ERVI.
Variable GAM GBM RF MX
Average Spring Max
Temp 47.8 82.2 48 3.6
Depth to bedrock 10.2 0 11.1 0
Coarse frags 7.2 2.2 13.6 0.5
Sand 2.6 0 4 0.2
CV Winter Precip 32.2 15.6 23.3 95.7



Table 47. Relative importance of the input variables used in modeling for ERVI with vegetationincluded.
Variable GBM RF
Average Spring Max Temp 57.7 31.7
Depth to bedrock 0 11.5
Coarse frags 26.9 23.6
Sand 0 6.1
CV Winter Precip 15.4 19.5
Vegetation 0 7.6

Figure 36. Relative frequency of vegetation associations at the locality point locations for ERVI.
ERVI localities were most commonly associated with North American Warm Desert Scrub &Grassland and Western North American Cool Semi-Desert Scrub & Grassland (Figure 36).
The ensemble model was comprised of 20 Random Forest models, 7 GAM, 3 MaxEnt, and 10GBM models contributing. The ensemble model including vegetation was composed of 20 RFmodels and 17 GBMs.



GOAG – Mojave Desert tortoise

Figure 37. Ensemble Models for GOAG using base environmental measures.

Figure 38. Ensemble Models for GOAG including the vegetation layer.



Predicted habitat for Desert Tortoises was similar between the base models, and the modelsincluding the vegetation layer (Figures 37 and 38). The base models high performance across theboard. However, the RF models had a lower Boyce index for the training and testing data. (Table48). The models including vegetation had only RF models selected as high performing. Theoverall performance was excellent, with all metrics high for both training and testing data (Table49).
Table 48. Performance metrics for GOAG. AUC (Area under Curve), BI – (Boyce Index), TSS (trueskill statistic) were each calculated independently for Training and Testing data and using allpoints.
Model AUC_Training AUC_Testing AUC_All BI_Training BI_Testing BI_All TSS_Training TSS_Testing TSS_All
EM 1 0.97 0.99 0.85 0.91 0.89 0.91 0.83 0.9
GBM 0.96 0.95 0.96 0.99 0.97 0.99 0.8 0.8 0.8
RF 1 0.97 1 0.63 0.7 0.82 0.99 0.84 0.96
GAM 0.95 0.95 0.95 1 0.97 1 0.78 0.77 0.78
MX 0.95 0.95 0.95 1 0.99 1 0.78 0.79 0.78

Table 49. Performance metrics for GOAG models including the vegetation layer. AUC (Area underCurve), BI – (Boyce Index), TSS (true skill statistic) were each calculated independently forTraining and Testing data and using all points.
Model AUC_Training AUC_Testing AUC_All BI_Training BI_Testing BI_All TSS_Training TSS_Testing TSS_All
EM 1 0.97 1 0.94 0.98 0.99 1 0.89 0.98
RF 1 0.97 1 0.99 0.99 1 1 0.84 0.96

Variable importance indicated that the coefficient of variation for Winter precipitation largelydrove the MaxEnt models, while the other three algorithms had multiple variables contributingtoward performance, with the CV of winter precip being the least important. Soil substratevariables and max temperature were important in the other three algorithms. The GBM modelwas largely driven by these, with no contribution of slope or winter precipitation contributing,while the GAM and RF models were supported by these variables. (Table 50). The RF modelsincluding vegetation showed only 2.7% importance of the vegetation layer, with balancedinclusion of the remaining variables (Table 51).
Table 50. Relative importance of the input variables used in modeling for GOAG.
Variable GBM RF GAM MX
Ave Max Temp 11 19.4 17.1 3.3
Depth to Bedrock 51.4 19.8 17.9 0
PPT Sand 37.6 19.6 15.3 1.3
Slope 0 12.5 16.8 1.4
Winter Precip 0 19.7 16.9 0.1
CV Winter Precip 0 9 16 93.8



Table 51. Relative importance of the input variables used in modeling for GOAG with vegetationlayer included.
Variable RF
Ave Max Temp 13.30
Depth to Bedrock 18.68
PPT Sand 23.33
Slope 12.44
Winter Precip 22.02
CV Winter Precip 7.63
Vegetation 2.61

The ensemble model was comprised of 20 Random Forest models, and 16 GBM models, with 2GAM models, with 3 MaxEnt models contributing. Ther were 20 RF models contributing to thevegetation based ensemble model.

Figure 39. Relative frequency of vegetation associations at the locality point locations for GOAG.
GOAG localities were largely located within North American Warm Desert Scrub & Grassland,and Western North American Cool Semi-Desert Scrub & Grassland (Figure 39).



LALU – Loggerhead shrike

Figure 40. Ensemble Model for the LALU base models.

Figure 41. Ensemble Model for the LALU models including vegetation.



The habitat predictions for Loggerhead Shrike had similar footprints of predicted habitat (Figures40 and 41), which is likely do to the low importance of the vegetation layer in the modeling effort(Table 55). For this species only GBM and RF models were in the highest performing groups. TheLoggerhead shrike model had high performance for certain algorithms – where AUC and TSS allhad high values with minimal losses between training and testing data (Table 52). The BI scoreswere generally lower, with the GBM and Random Forest models having low BI scores for training,testing, and all data. The ensemble model had low scores for training and all data. The modelsincluding vegetation had higher performance for all metric (Table 53).
Table 52. Performance metrics for LALU. AUC (Area under Curve), BI – (Boyce Index), TSS (trueskill statistic) were each calculated independently for Training and Testing data and using allpoints.
Model AUC_Training AUC_Testing AUC_All BI_Training BI_Testing BI_All TSS_Training TSS_Testing TSS_All
EM 1 0.97 0.99 0.18 0.81 0.55 0.91 0.84 0.89
GBM 0.96 0.96 0.96 0.74 0.6 0.73 0.82 0.81 0.82
RF 1 0.97 1 0.32 0.83 0.84 0.99 0.85 0.96

Table 53. Performance metrics for the vegetation inclusive models for LALU. AUC (Area underCurve), BI – (Boyce Index), TSS (true skill statistic) were each calculated independently forTraining and Testing data and using all points.
Model AUC_Training AUC_Testing AUC_All BI_Training BI_Testing BI_All TSS_Training TSS_Testing TSS_All
EM 1 0.96 1 0.99 0.95 0.97 1 0.88 0.98
RF 1 0.96 1 0.99 0.95 0.97 1 0.88 0.98

Flow accumulation and slope had generally high contributions towards all models (Table 54). TheGBM model as well as the Random Forest model were dependent on multiple variables, with theRandom Forest model having contributions from all variables included in modeling (Table 54).Inclusion of the vegetation layer influenced included only RF models, where there was 5%performance attributed to vegetation (Table 55).
Table 54. Relative importance of the input variables used in modeling for LALU for the basemodel set.
Variable GBM RF
Winter Precip 0 12.4
CV Winter Precip 2.8 12.4
Average Spring Max Temp 0.3 10.8
Slope 31.1 20.9
NDVI Start of Season 0.2 14.2
Flow Accum 65.6 29.2



Table 55. Relative importance of the input variables used in modeling for LALU for the vegetationadded model set
Variable RF
Winter Precip 12.71
CV Winter Precip 13.34
Average Spring Max Temp 11.31
Slope 22.15
NDVI Start of Season 12.39
Flow Accum 22.98
Vegetation 5.12

Figure 42. Relative frequency of vegetation associations at the locality point locations for LALU.
Vegetation associated with LALU localities was mostly within North American Warm Desert Scrub& Grassland, with Western North American Cool Semi-Desert Scrub & Grassland, and Land Useand Development as the second and third most common (Figure 42).
The ensemble model was comprised of 20 Random Forest models and 20 GBM models. Thevegetation based model was composed of 20 RF models.



PEAL – White-margined Beardtongue

Figure 43. PEAL Ensemble Model for the base environmental layers.

Figure 44. PEAL Ensemble Model for the base enviroonmental layers (Left) compared with thevegetation layer model (Right).
Models for White-margined Beardtongue differed considerably between the base models, andthe models including the vegetation layer (Figure 44). The models including vegetation as apredictor layer showed a much more restrictive predicted habitat area, with habitat morerestricted to the area surrounding the I-15 Corridor, concordant with the localities (Figure 43),and reduced area predicted around the perimeter of Las Vegas. The base model had highperformance across all algorithms – where AUC, BI, and TSS all had high values with minimal



losses between training and testing data (Table 56). The BI score for the Random Forest modelbuilt with the testing data was generally lower than other models (Table 56). Performance forthe models including vegetation was high for all performance measures tested (Table 57).
Table 56. Performance metrics for PEAL. AUC (Area under Curve), BI – (Boyce Index), TSS (trueskill statistic) were each calculated independently for Training and Testing data and using allpoints.
Model AUC_Training AUC_Testing AUC_All BI_Training BI_Testing BI_All TSS_Training TSS_Testing TSS_All
EM 1 0.98 1 0.97 0.96 0.97 0.98 0.94 0.97
RF 0.99 0.98 0.99 0.94 0.81 0.91 0.92 0.91 0.92
GAM 1 0.98 1 0.96 0.79 0.97 1 0.94 0.99
MX 0.98 0.98 0.98 0.97 0.97 0.97 0.87 0.94 0.88
GBM 1 0.98 0.99 0.94 0.84 0.98 0.96 0.92 0.95
Table 57. Performance metrics for PEAL for models including vegetation. AUC (Area underCurve), BI – (Boyce Index), TSS (true skill statistic) were each calculated independently forTraining and Testing data and using all points.
Model AUC_Training AUC_Testing AUC_All BI_Training BI_Testing BI_All TSS_Training TSS_Testing TSS_All
EM 1 0.98 1 0.96 0.99 0.99 1 0.93 0.99
RF 1 0.99 1 0.98 0.98 0.99 1 0.95 0.99
GBM 1 0.96 0.99 0.85 0.98 0.94 1 0.93 0.99

Depth to bedrock, winter precipitation, and CV of winter precipitation had generally highcontributions towards all models (Table 58). The MaxEnt model was again largely dependent ona single variable. The other models were more dependent on all variables included in modeling.Vegetation had good performance in the augmented models, with good representation across allvariables for the RF model, but with a low reliance of Vegetation. The GBM models had noinfluence of vegetation, but were driven by the CV of winter precipitation , depth to bedrockand, sand content (Table 59).
Table 58. Relative importance of the input variables used in PEAL base models.
Variable GBM RF GA< MX
Depth to bedrock 5.6 13.4 25.6 0
Clay 23 14.3 9.9 7.8
Extreme Min Temp 0.3 17.4 17.4 1.6
Slope 0 4.6 14.9 1.8
Winter Precip 41.2 23.9 14 1.1
CV Winter Precip 29.8 26.4 18.2 87.7

Table 59. Relative importance of the input variables used in PEAL models with vegetation.
Variable GBM RF
Depth to bedrock 31.8 18.1
Sand 15.1 12.4
Extreme Min Temp 0.8 16.5
Slope 0 3.3
Winter Precip 2.3 19
CV Winter Precip 50 28.6
Vegetation 0 2.2



Figure 45. Relative frequency of vegetation associations at the locality point locations for PEAL.
PEAL localities were associated with North American Warm Desert Scrub & Grassland andWestern North American Cool Semi-Desert Scrub & Grassland, with a fraction in Land Use andDevelopment (Figure 45).
The ensemble model was comprised of 18 Random Forest models, 3 GAM, 11 MaxEnt, and 9GBM models. There were 20 RF and 20 GBM included in the ensemble for the vegetationenhanced model.



TOBE – Bendire’s thrasher

Figure 46. TOBE Ensemble Model for the base layers.

Figure 47. TOBE Ensemble Model for the vegetation inclusion model.



The Model for BendireRs thrasher with vegetation showed a increased habitat prediction area,especially in the northeastern portion of Clark County (Figure 46 and 47). The models hadexcellent performance, with only the GAM model showing lower performance for the Boyceindex only for the testing dataset. The other models had high AUC, BI and TSS scores, with littledrop from training to testing (blind) data (Table 60). The models including vegetation alsoindicated high performance, with good AUC, TSS and BI scores for training data. The scores forthe Boyce index did drop for the testing dataset (Table 61).
Table 60. Performance metrics for TOBE. AUC (Area under Curve), BI – (Boyce Index), TSS (trueskill statistic) were each calculated independently for Training and Testing data and using allpoints.
Model AUC_Training AUC_Testing AUC_All BI_Training BI_Testing BI_All TSS_Training TSS_Testing TSS_All
EM 0.99 0.95 0.99 0.96 0.92 0.98 0.93 0.77 0.88
GAM 0.96 0.91 0.95 0.95 0.57 0.95 0.82 0.75 0.79
RF 1 0.96 1 1 0.97 1 0.99 0.81 0.95
MX 0.94 0.93 0.93 0.98 0.75 0.99 0.74 0.77 0.74
GBM 0.99 0.95 0.98 0.92 0.86 0.95 0.91 0.75 0.87

Table 61. Performance metrics for TOBE with vegetation included. AUC (Area under Curve), BI –(Boyce Index), TSS (true skill statistic) were each calculated independently for Training andTesting data and using all points.
Model AUC_Training AUC_Testing AUC_All BI_Training BI_Testing BI_All TSS_Training TSS_Testing TSS_All
EM 1 0.98 1 0.91 0.78 0.93 1 0.85 0.97
RF 1 0.99 1 0.9 0.4 0.97 1 0.92 0.98
GBM 1 0.95 1 0.96 0.71 0.87 1 0.85 0.94

The flow accumulation index, which gives an index of topographic position in the landscape hadthe lowest performance, but still contributed 10% toward the RF model. (Table 62). The higherperforming variables were winter precipitation, and its variance, while the other variablescontributed relatively evenly across models, with the exception of the distance to cliffs, whichperformed well in the GAM models. The MaxEnt model was largely a single variable model, usingonly the CV of winter precipitation. For the models including vegetation the RF model had a goodinclusion of all variables, including the vegetation layer at 41% and 13% for the GBM and RFmodels respectively (Table 63). The GBM models had influences from most variables, with threevariables that had low importance, while the RF models included contributions from all variables(Table 63).
Table 62. Relative importance of the input variables used in modeling for TOBE.
Variable GBM RF GAM MXDist to cliffs 0 6.8 18.6 0NDVI Amplitude 2.5 11.8 16.6 0.3NDVI Max 8.2 13.5 4.3 0.1Winter Precip 42.9 21.9 19.7 0.2CV Winter Precip 24.2 20.6 22 96.7Slope 17.3 14.7 10.8 2.6Flow Accum 4.9 10.7 8 0



Table 63. Relative importance of the input variables used in modeling for TOBE.
Variable GBM RF
Dist to cliffs 0.6 6.4
NDVI Amplitude 1.2 8.8
NDVI Max 2 12
Winter Precip 23.5 19.6
CV Winter Precip 2.4 10.5
Slope 14.6 14.1
Flow Accum 14.2 15.3
Vegetation 41.5 13.3

The ensemble model was comprised of 13 Random Forest models,12 GBM, 8 GAM, and 7MaxEnt models. For the models with vegetation included there were 20 RF and 20 GBM modelscontributing.

Figure 48. Relative frequency of vegetation associations at the locality point locations for TOBE.
Vegetation associated with TOBE localities was predominantly Western North American CoolSemi-Desert Scrub & Grassland, and North American Warm Desert Scrub & Grassland (Figure48).



TOLE – Le Conte’s thrasher

Figure 49. Ensemble Models for TOLE using base environmental layers.

Figure 50. Ensemble Models for TOLE including the vegetation layer.



The LeconteRs Thrasher model had a similar predicted habitat footprint for both the base andvegetation augmented models, but with differences in the northeastern portion of the countywhere the distribution was more limited in the vegetation augmented model (Figures 49 and 50).The models for the base had high overall performance – where AUC, BI, and TSS all had highvalues with minimal losses between training and testing data with the exception of the GBMmodel for the testing dataset (Table 64). The GAM and model had lower BI scores than otheralgorithms. For the models including vegetation only RF models performed well enough to bei8ncluded. The performance scores were higher than the base models, and metrics were highacross the board (Table 65).
Table 64. Performance metrics for TOLE. AUC (Area under Curve), BI – (Boyce Index), TSS (trueskill statistic) were each calculated independently for Training and Testing data and using allpoints.
Model AUC_Training AUC_Testing AUC_All BI_Training BI_Testing BI_All TSS_Training TSS_Testing TSS_All
EM 1 0.94 0.99 0.91 0.71 0.96 0.95 0.73 0.9
GAM 0.96 0.9 0.95 0.79 0.74 0.83 0.78 0.68 0.76
RF 1 0.95 0.99 0.94 0.75 0.98 0.99 0.72 0.94
MX 0.95 0.91 0.95 0.92 0.84 0.93 0.78 0.67 0.76
GBM 0.99 0.94 0.98 0.92 0.51 0.96 0.91 0.7 0.87

Table 65. Performance metrics for TOLE with vegetation models included. AUC (Area underCurve), BI – (Boyce Index), TSS (true skill statistic) were each calculated independently forTraining and Testing data and using all points.
Model AUC_Training AUC_Testing AUC_All BI_Training BI_Testing BI_All TSS_Training TSS_Testing TSS_All
EM 1 0.96 0.99 0.98 0.89 0.97 1 0.81 0.96
RF 1 0.96 0.99 0.98 0.89 0.97 1 0.81 0.96

The MaxEnt model converged on two variables, the GBM on three (but largely driven by the CVof winter precipitation), and the RF and GAM were more evenly balanced. (Table 66). CV WinterPrecip had high contributions across all models, and all variables had higher than 10%contribution for at least one of the algorithms. For the models including vegetation – the RFmodel had several variables that showed high importance, and moderate importance to thevegetation layer (Table 67).
Table 66. Relative importance of the input variables used in modeling for TOLE.
Variable GBM RF GAM MX
Flow Accum 18.7 20.4 7.9 0
NDVI Length of Season 0 6.7 15.8 0
CV Winter Precip 73 39.2 45.2 23.4
CV Average Spring Max Temp 0 16.3 14.5 76.2
Slope 8.4 17.4 16.6 0.4



Table 67. Relative importance of the input variables used in modeling for TOLE with thevegetation layer included.
Variable RF
Flow Accum 15.10
NDVI Length of Season 6.72
Winter Precip 8.06
CV Winter Precip 29.69
CV Average Spring Max Temp 13.56
Slope 19.82
Vegetation 7.05

Figure 51. Relative frequency of vegetation associations at the locality point locations for TOLE.
Vegetation associated with the TOLE localities was predominantly North American Warm DesertRuderal Grassland and North American Warm Desert Scrub & Grassland, with Western NorthAmerican Cool Semi-Desert Scrub & Grassland, Land Use and Development, and several otherassociations at lower prevalence (Figure 51).
The ensemble model was comprised of 19 Random Forest models, 3 GAM, 4 MaxEnt, and 14GBM models contributing. The vegetation based model had 20 RF included in the ensemble.



VIBE – Arizona Bell’s vireo

Figure 52. Ensemble Model comparing models with vegetation (right) and base environmentallayers (Left) for VIBE.
The Arizona BellRs Vireo models had markedly different footprints of predicted habitat betweenthe base models, and those including the vegetation layer, where the models includingvegetation showed a reduced area of predicted habitat relative to the standard modeling usingbase layers alone (Figure 52), where habitat was more restricted tightly around riparian areas inLake Mead, and some upland habitat predicted around the spring range. The models had highperformance across all algorithms (Table 68). For the base model, training and testingperformance remained high across all performance metrics, indicating good generalizability(Table 68). Similarly – the models including vegetation had excellent performance for bothtesting and training data (Table 69).
Table 68. Performance metrics for VIBE. AUC (Area under Curve), BI – (Boyce Index), TSS (trueskill statistic) were each calculated independently for Training and Testing data and using allpoints.
Model AUC_Training AUC_Testing AUC_All BI_Training BI_Testing BI_All TSS_Training TSS_Testing TSS_All
EM 1 0.97 0.99 0.97 0.89 0.97 0.94 0.87 0.93
GAM 0.98 0.96 0.98 0.97 0.82 0.95 0.88 0.84 0.87
RF 1 0.97 1 0.99 0.83 0.98 1 0.86 0.97
MX 0.97 0.97 0.97 0.99 0.94 0.99 0.86 0.87 0.86
GBM 0.99 0.97 0.99 0.96 0.85 0.97 0.95 0.9 0.94

Table 69. Performance metrics for VIBE with the vegetation layer included. AUC (Area underCurve), BI – (Boyce Index), TSS (true skill statistic) were each calculated independently forTraining and Testing data and using all points.
Model AUC_Training AUC_Testing AUC_All BI_Training BI_Testing BI_All TSS_Training TSS_Testing TSS_All
EM 1 0.96 1 0.95 0.69 0.96 1 0.89 0.98
RF 1 0.97 1 0.99 0.81 0.98 1 0.85 0.97
GBM 1 0.94 0.99 0.99 0.9 0.97 0.96 0.78 0.92



The variable contributions indicated relatively high inclusion of all variables, with WinterPrecipitation contributing the least (Table 70). The GBM model consisted largely of only threevariables, while the other three were more balanced across the board (Table 70). Vegetationcontributed little toward variable importance for either the GBM algorithm, and only moderatelyfor RF (Table 71). Both the GBM and RF models showed importance across many inputs, andAverage Max Temperature Spring Max Temperature, Silt Content, and Topographic index wereamong the highest contributing variables for both modeling algorithms (Table 71).
Table 70. Relative importance of the input variables used in modeling for VIBE.
Variable GAM RF MX GBM
Ave Max Temp 0.6 16 10.9 7.7
Average Spring Max Temp 11.2 14.7 45.7 7.8
NDVI Amplitude 24.4 14.2 0.3 1.2
Winter Precip 22.2 8.1 2 0
Slope 19.1 8.4 6.1 0
TPX 12.3 10 7.8 1
Silt 10.3 28.6 27.1 82.3

Table 71. Relative importance of the input variables used in modeling for VIBE includingvegetation.
Variable GBM RF
Ave Max Temp 12 13.4
Average Spring Max Temp 12.9 14.1
NDVI Amplitude 8.3 11.8
Winter Precip 0 9.7
Slope 0 9.9
TPX 32.6 15.8
Silt 33.6 18.3
Vegetation 0.6 7



Figure 53. Relative frequency of vegetation associations at the locality point locations for VIBE.
Vegetation associated with Bells Vireo localities had among the most diverse of all habitat types(Figure 53). The largest was North American Warm Desert Scrub & Grassland .
The ensemble model was comprised of 11 Random Forest models, 10 GBM models, 9 GAM and11 MaxEnt models, with an uncharacteristically even contribution among all algorithms. Thevegetation based models were an ensemble of 20 RF and 10 GBM models.
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